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SOME RESULTS IN THE NONLINEAR STABILITY FOR ROTATING
BENARD PROBLEM WITH RIGID BOUNDARY CONDITION

PAOLO FALSAPERLA,% ANDREA GIACOBBE ” AND GIUSEPPE MULONE ¢*

ABSTRACT. The scope of this article is to expose the stabilizing properties of rotation and
solute gradient for the Bénard problem with (at least one-sided) rigid boundary conditions.
We perform a linear investigation of the critical threshold for the rotating Bénard problem
with a binary fluid, and we also make an investigation with a Lyapunov function for the
particular problem of a rotating single fluid. In all the these cases an increase of the Taylor
number has stabilizing effects.

In onore di Giuseppe Grioli
per i suoi 100 anni, con riconoscenza.

1. Introduction

The Bénard problem has attracted the attention of scientists since the early 1900. The
first systematic treatment of the problem can be found in the book of Chandrasekhar [1],
where the stability of the motionless solution is discussed in detail. As it follows from his
and later analyses, the instability threshold strongly depends on the boundary conditions
on the velocity field U, the temperature O, and the concentration field I'.

While Chandrasekhar’s linear analysis allowed to determine the thresholds above which
the rest solution is unstable and convection sets in, Joseph [9] approached the question
of stability for the classic Bénard problem by choosing an appropriate Lyapunov func-
tions (which in this case is the L?(2) norm, also called energy norm), and by proving the
nonlinear stability of the equilibrium. Joseph’s analysis not only approaches the Bénard
problem from a different angle, but also allows to show that the motionless solution is
stable precisely below the thresholds obtained by Chandrasekhar, which gives a converse
of Chandrasekhar’s instability result. The result obtained by Joseph can be easily genera-
lized to other problems whenever the linear operator is symmetric with respect to the scalar
product [4, 13]. This technique of showing that nonlinear stability holds precisely up to the
point in which linear instability sets in, is now referred to as proving the coincidence be-
tween linear instability and nonlinear stability thresholds, and has been used successfully
in many articles.

The classical Bénard problem can be enriched with a variety of physical effects: uniform
rotation of the fluid, presence of a magnetic field, presence of a solute in the fluid. All
such effects change the dynamical equations by adding skew-symmetric terms in the linear
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operator, which typically stabilize the equilibrium solution [4, 19], i.e. raise the stability
threshold.

At the end of the eighties, Straughan, Rionero, Galdi, Mulone, Padula [5, 6, 17] affined
the technique of finding a Lyapunov function, and applied it to many of the above varia-
tions of the classical Bénard problem. It turned out that there are techniques to compute
Lyapunov functions that show the stabilizing effects of skew-symmetric terms, and some-
times even prove the coincidence of linear instability and nonlinear stability (and in this
last case the Lyapunov functions are called optimal). All the investigations above are made
under the hypothesis that the boundary conditions are of stress-free type. Such assump-
tion allows an a-priori choice of Fourier series expansion of the solutions, and permits an
analytic approach to the problem.

Rigid boundary conditions, which are physically much more reasonable than stress-free
ones, do not allow such analytic approach, and they hence make it much more difficult to
investigate the stability of the motionless solution. While in the similar yet simpler problem
of fluid flows in a porous medium, the coincidence between linear instability and nonlinear
stability has been solved by Straughan [22] (see also [11]), in the fluid dynamics Bénard
problem with stress-free boundary conditions the coincidence is only partially solved [17],
and it seems possible that the coincidence can be proven only using a family of different
Lyapunov functions tailored on the eigenvectors of the linearized system. On the other
hand, results obtained with rigid boundary conditions are mostly numerical [2, 3], and the
construction of an optimal Lyapunov function that yields coincidence of linearly unstable
and nonlinearly stable thresholds is still an open question.

In this article, as far as we know for the first time, we show the stabilizing effect of the
rotation when one or both the boundaries are rigid. The problem is complicated by the
fact that the techniques developed in [17] cannot be used when the analytic expression of
critical eigenvalues and relative eigenvectors is impossible to obtain. As a matter of fact,
the construction of an optimal Lyapunov function for the rotating Bénard problem is a still
open problem for general boundary conditions.

In Section 2 we give an overview of known linear results and some new results as well.
In particular we perform a numerical linear analysis of the Bénard problem with rotation
and solute, and plot the critical threshold of heat Rayleigh number depending on Taylor
number and solute Rayleigh number. In Section 3 we provide a Lyapunov function for the
purely rotating Bénard problem, and we use it to prove numerically the stabilizing effect
of the rotation. For the construction of such a Lyapunov function, we have been guided by
the stress-free case [16, 17], where analytic computations can be performed.

2. The problem and known results

Consider an incompressible newtonian fluid filling @ = R2  x(—d/2, d/2)., an infinite
layer of thickness d. Denoting by i, j, k the unit vectors of the reference frame, we assume
that the fluid is subject to the vertical action of gravity g = ¢ k and is uniformly rotating
around the vertical axis with angular velocity Q k. The state of the fluid is determined by
the velocity field U, the pressure II, the temperature O, and the solute concentration I.
Denoting by p(T',C) = po(1 — ar(T — Tp) + ac(C — Cy)), the equations of the fluid in
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the Boussinesq approximation are

U, +U-VU = —VII/py + p(T,C)g/po — 20k x U + vAU
V-v=0

0,4+ U-VO = kgAO

I, +U- VI = kpATL.

(For the validity of Boussinesq approximation see the very recent results of Gouin, Murac-
chini and Ruggeri [7].)

These equations are typically associated to boundary conditions U = 0, called rigid
boundary conditions (that we indicate with R) or k- U = 0, 0,(i- U) = 9,(j - U) =
0, called stress-free boundary conditions on the velocity (that we indicate with F). Such
conditions can be given independently on each of the two boundaries. On the temperature
and solute concentration typical conditions are © = © or ©, = F (with ©, F given real
numbers), respectively I' = I'or I', = G. We indicate the above conditions on temperature
respectively with T and H, on concentration the conditions are indicated respectively with
C and K. The rigid boundary condition is physically more reasonable than stress-free since
it corresponds to a solid boundary. On the other hand stress-free boundary conditions allow
an analytical approach to the problem.

Let us now consider the stationary solution, that has the form U = 0,0 = ©p—Fz, T =
I'o — Gz, and II a quadratic polynomial in z. Denoting by u = (u, v, w) the disturbance to
velocity, p the disturbance to pressure, ¥ and -y the disturbances to temperature and solute
concentration, the evolution equations of a nondimensional disturbance of such motionless
solution are

u+u-Vu=-Vp+ (RI—-Cyk+Tuxk+ Au
V.ou=0

1
P.(9+u-VI) = Rw+ AY M
Pe(ye+u-Vy) =Cw+ Ay.
As is well known, applying curl and double-curl one can reduce the problem to
Aw; = A*(RY — C) — T¢, + A%w + N,
=Tw, + AC+ N,
G =Tw, +AC+ N @

Pr'l9t sz-l-Aﬁ—l—Nﬁ
Py =Cw+ Ay +N,,

where ¢ = (V x u) - k is the third component of the vorticity of u, and where

Ny =—[V x (V x (u-Vu))] -k,
Ne=—=[V x (u-Vu)] -k,
Ny =—=P,(u-V9), N,=—PFP.(u-Vvy)

are nonlinear terms.

2.1. Linear analysis. In this subsection we recall the linear results for the rotating Bénard
problem for a binary fluid with a combination of stress-free and rigid boundary conditions
on velocity, fixed temperature or fixed heat flux, fixed solute concentration or fixed solute
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flux. This analysis has been performed e.g. in [2], we briefly recall here its derivation and
show in the plots some unpublished results.
Imposing that solutions are in planform, i.e. are of the form

fz,y,2,t) = e F(2)g(z,y),

the linear system associated to (2) is

o(D? —a®>)W = —a?(RO® — CT') — TDZ + (D? — a®)*W

0Z =TDw+ (D? —a*)Z

oP,© = RW + (D? — a?)©

oP.I'=CW + (D? — a®)I.
Here g(z,y) a function of z, y periodic with wave vector (a,, a,) such that Ag+a?g = 0,
and a® = a2 + a? is the wave number.

In [2] the authors investigate the interaction between the stabilizing effects of rotation

and solute concentration. In Figure 1 we complement such results with the analysis of
the cases in which the boundary conditions are rigid and fixed heat flux on one side and

stress-free and fixed temperature on the other (RH-FT). We impose fixed concentration at
the boundaries (C-C).

20

16

logyg T2 l0g1g T2

Figure 1. In right panel, the dependence on Taylor number T2 of the critical
thresholds for Rayleigh numbers R? in the case of RHC-FTC boundary condi-
tions. In this plot P, = P, = 1, C' = 10,102, ...,10" from bottom to top. The
left panel represent the dependence of the critical wave number on T°2.

In Figure 2 we plot the effect of solute Rayleigh number in the case of fixed heat flux
on both sides (RHC-RHC).

We finally plot in Figure 3 the critical threshold of temperature Rayleigh number for the
case of single fluid and P, = 1. In this case the instability can only occur as stationary
convection, we can hence pose ¢ = 0 and compute the spectrum of the above eigenvalue
problem using a Chebyshev-tau algorithm. The plots shown in Figure 4 of [3] can be
complemented with such plots, which represent the critical (linear) Rayleigh number R,
as function of the Taylor number 7" with two possible boundary conditions: rigid and fixed
heat flux in both boundaries (which is also shown in the cited article) and rigid with fixed
heat flux in one boundary and stress-free and fixed temperature in the other.
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logyg c? logg c?

Figure 2. In right panel, the dependence on solute Rayleigh number C? of the
critical thresholds for Rayleigh numbers R? in the case of RHC-RHC boundary
conditions. In this plot P, = P, = 1, T = 10%,10%%,10%,...,10% from bot-
tom to top. The left panel represent the dependence of the critical wave number
onC.
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Figure 3. Dependence on Taylor number T2 of the critical thresholds for
Rayleigh numbers R? in the case of RH-RH boundary conditions (solid) and
RH-FT boundary conditions (dashed).

3. Nonlinear stability

The stabilizing effects of rotation in the Bénard problem have been analyzed in [5] and
[17, 18] with stress-free, and fixed temperature boundary conditions. In [5] the authors
gave a possible Lyapunov functional and proved the stabilizing effect of rotation for the
nonlinear system, they also gave a nonlinear critical threshold for the Rayleigh number that
is numerically shown to be below the linear critical threshold. It was later shown in [17]
the existence of a Lyapunov function which gives the coincidence of nonlinear stability and
linear instability thresholds for 72 up to 807 (see also [10]). Although no proof exists, we
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expect that the gap between nonlinear stability and linear instability is due to a poor choice
of the Lyapunov function, or to non-sharp estimates in the investigation of monotonicity
of its orbital derivative. Despite the fact that in many articles has been conjectured the
existence of a Lyapunov function which gives coincidence, for large 7" such coincidence
is still unproven, and for many accurately chosen Lyapunov functions it is possible to find
explicit solutions of the problem, converging to zero, along which such functions are not
monotonically decreasing.

A large part of the community shares the idea that coincidence can always be shown
with energy methods, and even the puzzling experimental results of Rossby [20] can be
interpreted in a way that excludes the existence of subcritical instabilities [8, 14].

3.1. Our results with the energy method. The Lyapunov function introduced in [5], later
revisited and adapted in [17], has been reconsidered and simplified in [15, 16]. It turns out
that to prove the coincidence of linear and nonlinear thresholds up to 72 = 807 (in the
stress-free case) it is possible to use the function £ = E; + bE5 with

1 R*a® 29112 2 2 2 2 2 29112
Bi=> (=5 —aslRG+T -7 e ,
1 2(R2a2_T27r2\|RC +Tr0|° + (Ra TOVwI” + |ITC + Ra™d||

By = o ([[Vull* + P ||A9|* + [[VC|I* + [|Aw]* + [|[VA ul*).

N | =

The nonlinearities can be estimated with techniques similar to those in [16], but in this
article we simply plan to show that a numerical investigation of the stability threshold
with such Lyapunov function gives, in the RH-FT case, a line that lies below the linear
instability threshold for every value of the parameter, but is monotonically increasing.

Since our nonlinear analysis is restricted to the case of a single rotating fluid, whose
equations are

Awy = RA*Y — TC, + A%w + N,
G =Tw. + AC+ N¢ 3)
P9 = Rw + A9 + Ny,

and since we also consider only the case P, = 1, a natural choice of fields is ¢ = RA*¢ —
T(.,and ¢ = R( — T, allows to recast system (3) as

Awy = ¢+ A2w + My,
by = R2A*w — T?w,, + Ap + My 4)
e = A + My,

where M,,, My, My, can be expressed in terms of u, v, w, ¢, 1. Observe that ¢ is pre-
cisely the field associated to s = Rk + T'u x k in [16] once the double curl is applied,
and is deduced from the expression of the eigenvector associated to the critical eigenvalue
in the stress-free case.

Remark 1. The third equation has a clearly stabile behaviour, and is uncoupled with the
other two. It follows that the stability of the system requires the investigation of the first
two equations of (4). Hence the zero solution of system (3) is stable if and only if the origin
w = 0, ¢ = 0 is stable for the system (41 2).
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Boundary conditions that transform into boundary conditions for the fields ¢, are
either stress-free on velocity and fixed temperature (FT), which induce the conditions ¢ =
0 and ¢, = 0, or rigid boundary conditions on velocity and fixed heat flux (RH), which
induce the conditions ¢, = 0 and ¢ = 0. These are the conditions that we allow at the
boundaries of the fluid.

The Lyapunov function has a much simpler expression in this new set of fields. In fact,
disregarding the role of v that is clearly stabilizing, the Lyapunov function E; has the form

1
E =3 (AIVell” +14l1%) . ()

When doing a numerical nonlinear investigation, we will use this last function. The com-
plementary energy E5 [12] does not play a role in this numerical analysis, since its role is
exclusively that of estimating the nonlinear terms (see [5, 6, 17, 21]).

The coefficients of the quadratic form E; have been obtained in [16] using the method
of canonical reduction (see [12] and references therein). This method gives the best coef-
ficients, and hence the A that we numerically obtain by maximizing the critical Rayleigh
number must, in the stress-free case, coincide with R?a? — T?n2. This is shown in Fig-
ure 4 left. In this article, we investigate the case of RH-FT boundary conditions. The best
coupling parameter A\ determined numerically in this case differs from the parameter deter-
mined by Mulone [16] with the method of canonical reduction, as can be seen in Figure 4
right.

14000 T T T T 8000
12000 R 6000 |
10000 - 1 4000
A A
8000 r
2000 r
6000 r
ot
4000 r
0 200 400 600 800 1000
T2

Figure 4. Plot of R%(T)a2(T)—T?n? (solid) and, represented as a train of data,
the numerically determined values of the coefficient A in the Lyapunov function
in equation (5). The left pane represents the plots for the FT-FT case, the right
pane for the RH-FT cases.

The stabilizing effect of rotation in the rigid case, with the admissible boundary condi-
tions of fixed heat flux, cannot be treated analytically and, to our knowledge, has not yet
been analyzed numerically. In this short note we prove, using the a Chebyshev-tau algo-
ritm, that the Lyapunov function (5) gives a threshold of nonlinear stability increasing with
T. The orbital derivative of E is

E=1-D
where
I =R A"w,¢) = T*(w:z, 0) = Moyw), D =|[|[Vg|[* + N[Aw|[®.  (6)
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Considering )
E=D(I/D-1),
the orbital derivative is negative-definite as long as
max /D < 1.

The Euler-Lagrange equations associated to this maximum problem are

RPA*w — T?w,, — Aw+2mA¢p =0 )

R2A*¢p — T2, — Ao — 2mAAAw = 0.
This system (posing m = 1) can be thought as an eigenvalue problem in R, which can be

solved numerically by a Chebyschev-tau method [21]. The nonlinear critical threshold can
be compared with the linear one in Figure 5.

1600 b
1400 B

R2 1200 | 1

1000 | B

0 200 400 600 800 1000

Figure 5. Linear and nonlinear critical threshold for the RH-FT boundary con-
ditions (solid and dashed respectively).

4. Conclusions

There are many directions along which this kind of investigations can evolve. The first
question to address is the existence, even for the stress-free case, of an optimal Lyapunov
function or of a family of Lyapunov functions that prove coincidence.

With more general boundary conditions, the basic motion could have non-zero velo-
city. In such case the nondimensional parameters will depend on space, and many open
questions exist already at the level of linear analysis. When the boundary conditions are
non-stationary, or when the forces acting on the system explicitly depend on time, the basic
solution is non-stationary, and the stability of such a solution requires the investigation of
non-autonomous differential equations.

The non-autonomous case has many relevant applications, for example the sun heating
a layer of water. A numerical investigation can be performed also in such cases, while any
theoretical approach requires careful validation [4].
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